Addition to be taught alongside each other Subtraction

Y3 Children will continue to use empty number lines with increasingly larger numbers and will begin to use informal methods (jottings) o support, record and explain partial mental methods, building on existing mental strategies.

Counting on

Count on from the largest number
irrespective of the order of the calculation. Bridge through tens and begin to bridge
hrough 100s.
e.g. $38+86=124$

Compensation
(For near multiples of 10)
e.g. $49 p+73 p=122 p=£ 1.22$

Expanded informal method using place

 valueIntroduce practically, using Base 10 or place value counters. Encourage children to use equipment and informal methods when the calculation can't be done mentally. Model first with simpler numbers which they can solve mentally.
Model expanded horizontal partitioning using Base 10 or place value counters.

$243=200+40+3$
$2435=400+30+5$
+45
$678=600+70+8 \mathrm{~S}$

Formal written method:

As the children develop their understanding of the informal method, this will lead into

Children will continue to use empty number lines with increasingly large numbers and will begin to use informal methods (jottings) to support, record and explain partial mental methods, building on existing mental strategies

Counting back

Subtracting the tens in one jump and the units in one jump (focus on efficiency e.g. challenge children to solve subtraction calculations in two steps) 147-23 147-20 = 127

127-3=124
Bridging through ten can help children become more efficient.
e.g. 147-63


```
-60
-38
```

Counting on to find the difference Use real life contexts such as height, length etc. e.g. I am 123 cm tall. My brother is 98 cm tall. How much taller am I?
$98+\square=123 \quad \square=123-98$
When the numbers involved are close together or near to multiples of 10 or 100 , counting on with a number line can be used, alongside resources such as bead bars.

Compensation (for near multiples of 10) $63-8=55$

Expanded informal method using place value

 67-24$67=60+7$
$6=60+7$
$-24-20+4$
$43=40+3$
Introduce practically, using Base 10 or place value counters. Develop into 3 digit - 2 digit numbers.
Partition 3 digit numbers into ways that are helpful for the subtraction
e.g. $325-58=325-25-25-5-3=267$

Formal written method:

Multiplication to be taught alongside each other Division

Children will continue to use:

Repeated addition

6 multiplied by $4=6 \times 4=6$ 'four times'
4 times 6 is $6+6+6+6=24$ or 4 lots of 6
Children should use number lines or bead bars to support.

Arrays

Increasingly use arrays to make links between x and \div
Children should model a multiplication calculation using an array. This knowledge will support the

development of the grid method.

 \section*{MHOMO:}

$4 \times 9=36$
$36 \div 9=4 \quad 36 \div 4=9$
It is important for teachers to be consistent. Either seen as a row of 9,4 times $(9 \times 4) \ldots$ or a column of 4,9 times (4×9). Both are correct

Moving towards 2 digit $\times 1$ digit using place value. $90 \times 4=40 \times 9=360360 \div 9=40360 \div 4=90$

Derive facts from known facts

Use number line to show known multiplication facts and then derive unknown facts.
e.g. If you know $5 \times 10=50$. Count back 5 to derive 5×9 etc. 5×5 will be half of 5×10 etc... Relate to other 'tables'

Also, partition an array to show how to derive an unknown fact from a known fact e.g. use knowledge of 2 and 5 times tables to work out
multiples of 7, e.g. $7 \times 3=5 \times 3+2 \times 3$

Scaling

Use Base 10 equipment to show 10 times bigger / smaller. Model the enlargement.
e..g to show why 6×3 helps in solving 60×3. Find a ribbon that is 4 times as long as the blue ribbon $r=b \times 4$

Ensure that the emphasis in Y 3 is on grouping rather than sharing, except when using fractions as this is sharing.

objects

$20 \div 5=4$
$20 \div 4=5$
Number lines and known multiplication facts to solve division following on from repeated addition.
Use number lines and known multiplications to solve divisions incl. with remainders.

Move into chunking (grouping) using these steps. Encourage children to be as efficient as possible.

Moving towards more efficient approaches, using known facts.

Using symbols to stand for unknown numbers to complete equations using inverse operations (2 digit $\div 1$ digit numbers)

$$
26 \div 2=\square \quad 24 \div \Delta=12 \quad \square \div 10=8
$$

Find unit fractions of numbers and quantities Start to relate fractions to division in context:

In order to encourage children to work mentally, calculations should always be presented horizontally so children can make decisions about how to tackle them.
Encourage children to choose to use the most efficient method for the numbers and the context. Teach operations together to emphasise the importance of inverse.

Addition to be taught alongside each other Subtraction

Difference by counting on (See Y3) For numbers

close together
e.g. $102-89=13$

Including measures
e.g. $754 \mathrm{ml}-690 \mathrm{ml}$ or $1275 \mathrm{~g}-786 \mathrm{~g}$ or $£ 3.00-£ 2.68$

Counting back and compensation
When appropriate (using number lines) bridging through 10, 100 and 1000 and rounding and adjusting (compensating) e.g. $42 p-5 p$ or 193 litres -18 litres or $£ 823-£ 32$ or $706 \mathrm{mins}-28 \mathrm{mins}$ or $307 \mathrm{~cm}-111 \mathrm{~cm}$ or 1006 km - 9 km

Expanded horizontal (including 4 digit numbers) using Dienes should be modelled to help children to understand decomposition.

Continue to teach compensation method where children round and adjust to the nearest $10 / 100$, especially in the context of money.
4.99 $+£ 6.99=£ 5.00-1 p+£ 7.00-1 p=$ $£ 12.00-2 p=£ 11.98$

Using similar methods, children will:
$\checkmark \quad$ add several numbers with different numbers of digits
$\checkmark \quad$ begin to add two or more three-digit sums of money, with or without adjustment from the pence to the pounds
$\checkmark \quad$ know that the decimal points should line up under each other, particularly when adding or subtraction mixed amounts, e.g. $£ 3.59+78 p$

Multiplication to be taught alongside each other Division

2 and 3 digit $\times 1$ digit numbers. Include $\times 0$ and $\times 1$. Partitioning using place value and the distributive law
 $8 \times 5=(30 \times 5)+(8 \times 5)$
 $=150+40$
 $=190$
 Children will continue to use arrays where appropriate leading into the grid method of multiplication.

Grid method

Multiplication by a single digit.
Children should approximate first
23×8 is approximately $25 \times 8=200$

$$
\underbrace{25 \times 8}_{0} \underbrace{25}_{55} \quad \underbrace{25}_{50} \quad 25 \quad \underbrace{25}_{100} \quad 25 \quad 25 \underbrace{25}_{150} \text { 25 }
$$

Formal Written Method

As, children develop their knowledge of informal methods, they will be introduced to the formal written method:
$6 \times 23=$
23
6
$\times \quad 6$
138

2 and 3 digit $\div 1$ digit numbers. Include $\div 0$ and \div 1
Number lines and known multiplication facts to solve division
Children will continue to develop their use of number lines and known multiplication facts to solve division calculations (using known multiples of the divisor). Initially, these should be multiples of $10,5,2$ and 1 - numbers with which the children are more familiar, moving on to $3 \mathrm{~s}, 4 \mathrm{~s}$ and 8 s .

Short division (2 digit $\div 1$ digit numbers) Illustrate using horizontal and vertical bead bar and number line to make link between vertical column method.
Expanded written method:

$72+3$

$72 \div 3=\square$

Using knowledge of place value, known facts and fractions
$360 \div 6=606 \times 10 \times 6$ or $6 \times 6 \times 10$ or $6 \times 60=$ 360
 rounding up or down after division. Any

In order to encourage children to work mentally, calculations should always be presented horizontally so children can make decisions about how to tackle them.
Encourage children to choose to use the most efficient method for the numbers and the context. Teach operations together to emphasise the importance of inverse.

